
Polygonal model for layered inorganic nanotubes

Kevin Tibbetts,* Robert Doe,† and Gerbrand Ceder‡

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
�Received 7 January 2009; published 8 July 2009�

Multiwalled inorganic nanotubes with circular cross sections must have either an incoherent interface or a
large amount of strain. However, nanotubes with a polygonal cross section can have a coherent interface with
considerably less strain. We present a model for polygonal nanotubes with no defects where the chirality of the
nanotube determines the shape of the cross section. Circular and polygonal nanotubes are compared based on
their strain energy and interfacial energy. We have used first-principles calcuations to parameterize strain and
interfacial energy for TiS2 nanotubes. These calculations show that the polygonal model is energetically
favorable to the circular model when the inner radius is above a critical radius, 6.2 Å for a TiS2 nanotube with
ten layers. These results should provide insight into further investigations of nanotube structure and allow
computational studies to more accurately predict nanotube properties.
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I. INTRODUCTION

Following the discovery of carbon nanotubes in 19911

many noncarbon materials have also been synthesized in
nanotube form.2–9 The rich chemical variety of such inor-
ganic nanotubes may lead to substantial opportunity for tun-
ing materials properties. In this manuscript we develop a
general model for the structure of multiwalled inorganic
tubes.

Nanotubes can be synthesized from layered �two dimen-
sional� or nonlayered �three dimensional� materials. Carbon
nanotubes as well as most inorganic nanotubes prepared to
date are layered nanotubes.1–4 In general, layered nanotubes
consist of the same layers that the bulk material is comprised
of, rolled into a tubular form. Nonlayered nanotubes are typi-
cally made by growing the material in a template with nano-
sized pores.10,11 If growth is stopped before the pores are
filled, nanotubes are the result, while if the pores are filled,
nanowires are created. In this paper we will focus on layered
nanotubes.

Layered nanotubes can be single walled12–15 or
multiwalled.1–4 In some cases these nanotubes are
nanoscrolls,16–18 or jelly roll nanotubes, meaning one layer is
scrolled to form a tube �the cross section is a spiral�. In other
cases the multiwalled nanotube consists of several concentric
“single-walled” nanotubes.2,19,20 In this paper we develop a
model for the energy and shape of concentric, multiwalled
nanotubes, but the main ideas can likely also be applied to
nanoscrolls.

In layered nanotubes there is a single sheet that is consid-
ered the basic structural unit of the nanotube. For carbon
nanotubes this sheet is a single atomic layer, known as
graphene. For boron nitride �BN� nanotubes, first discovered
in 1995,21 the basic unit is the same single atomic layer sheet
as for carbon nanotubes with carbon atoms replaced by Bo-
ron and Nitrogen. The majority of inorganic layered nano-
tubes are of the form MX2 �M=transition metal, X=S, Se,
O�. The basic structural unit for these nanotubes is a triple
layer sheet, consisting of a layer of transition metal cations
sandwiched between layers of anions. WS2 nanotubes were
the first MX2 nanotubes discovered in 1992,2 soon followed

by MoS2 nanotubes in 1993.3 Numerous other materials of
the form MX2 have shown stability in tubular form.5–9

Many applications for inorganic nanotubes have been dis-
covered. WS2 nanotubes have proven to be effective solid
lubricants,22 display shock-wave resistance23 and have been
used as tips in scanning probe microscopy.24 TiO2 nanotubes
have been used as hydrogen sensors,25 dye sensitized solar
cells,26 and have displayed photoluminescence properties.27

Many inorganic layered nanotubes have shown the ability to
intercalate lithium, hydrogen, and magnesium,28–37 indicat-
ing potential as energy storage materials.

In this paper we present a model for multiwalled nano-
tubes with a polygonal-cross section and parameterize it with
first principles calculations for TiS2. A polygonal nanotube
has more strain energy than a circular tube, due to a decrease
in radius of curvature at its corners, but in return has less
interfacial energy. There is evidence of multiwalled
carbon20,38–41 and boron nitride42,43 nanotubes with a
polygonal-cross section. The existence of graphitic polyhe-
dral crystals has been known for many years.44–47 These are
large tubes where the core has a circular-cross section and
the shell has a polygonal-cross section. Multiple studies have
shown that bundles of single-walled carbon nanotubes will
develop a polygonal-cross section when subjected to hydro-
static pressure.48–51 Among dichalcogenides, there is evi-
dence of polygonal WS2 nanotubes.52,53 There have been
several computational studies of polygonal carbon
nanotubes.51,54–56 Theories on the structure of polygonal
nanotubes typically assume that defects form at the polygon
corners.39,41

Using our model, we find that for reasonable tube diam-
eters a tube can lower its energy by forming a polygonal-
cross section where the only defects are stacking faults. The
optimal shape of the polygon, specifically the number of
sides, depends on the interlayer spacing and the chirality of
the nanotube. In Secs. II and III, we explain the polygonal
model and discuss the various energy components of this
model. In Sec. IV, we present the computational and struc-
tural details of our calculations. In Sec. V, we explain the
results of the calculations and in Sec. VI we discuss some
additional considerations of the polygonal model.
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II. ENERGY COMPONENTS OF NANOTUBES

Because the length of nanotubes is considerably larger
than their diameter they can be considered infinite along the
tube axis. In our calculations the unit cell consists of the
complete cross section of the nanotube with a length along
the nanotube axis defined by some multiple of the periodic
distance in this direction. Calculations discussed in this paper
are for armchair �n ,n� nanotubes with a periodic unit along
the nanotube axis of 3.46 Å. Nanotube energies discussed in
this paper refer to this periodic unit, unless specifically des-
ignated as energy per atom. The diameter of inorganic nano-
tubes seen experimentally is approximately 10 nm.2,57–59 The
periodic unit cell of a single layer tube with this diameter
contains approximately 315 atoms. Two layers �630 atoms�
are required to determine the structure and interaction be-
tween layers. First principles calculations are impractical for
this many atoms so calculations on complete nanotubes of
this size are not performed.

An alternative to the explicit calculation of large tubes is
to divide the energy of a nanotube into a number of energy
components and analyze the components separately. The en-
ergy of a nanotube, relative to the bulk material, can be di-
vided into four components: strain energy, interfacial energy,
defect energy, and surface energy. The total energy of the
nanotube can thus be written as,

ETotal = N�bulk + Estrain + Einterface + Edefect + Esurface. �1�

In this equation N is the number of atoms, �bulk is the bulk
energy per atom, and all other energy terms represent the
excess energy of the nanotube due to various components. In
this paper we compare the energy of two possible structures
for nanotubes, a polygonal model in which the sides of the
tube form polygonal faces, and a more cylindrical model in
which the tube cross section is circular. The surface energy
per unit area for each of these models will be approximately
identical so this component is not important. Defect forma-
tion is an important energetic component that can affect the
structure of a nanotube. Defects could lower the energy of
polygonal nanotubes, increasing the likelihood of their for-
mation, however their treatment lies outside the scope of the
work presented here. The two energy components discussed
in detail in this paper are the strain energy and interfacial
energy.

A. Strain energy

1. Bending strain energy

The bending strain energy is the energy required to apply
a given amount of curvature to a sheet of material. In linear
elasticity the bending strain energy per atom, �bend, is in-
versely proportional to the square of the radius of curvature,
rc. The number of atoms, N, in a circular nanotube cross
section with the periodic length is proportional to the radius
of curvature �radius of the circle� so the total bending strain
energy, Ebend, is inversely proportional to the radius. This can
be shown mathematically as:

�bend�r� =
Cbend

r2 , �2�

N�r� = 2� � Clengthr , �3�

Ebend�r� = N�bend =
2�ClengthCbend

r
, �4�

where Cbend is the bending strain energy constant and Clength
is a factor to convert from length to number of atoms. These
two constants, Cbend and Clength, are independent of the radius
of curvature and depend only on the material.

2. Tensile strain energy

Tensile strain energy is the energy required to stretch or
compress a sheet of material. Stretching or compressing of
nanotube layers is often necessary in order to achieve a co-
herent interface between layers. Tensile strain is defined by
the strain fraction, �, which is the ratio of the change in
length, �l, to the initial length, l0.

� =
�l

l0
. �5�

Tensile strain energy per unit volume is proportional to the
square of the strain fraction, with the constant of proportion-
ality equal to one half of the Young’s Modulus.

Etensile = N�U0
E

2
�2 �6�

In Eq. �6�, N� is the number of atoms under tensile strain, U0
is the volume per atom and E is Young’s Modulus.

B. Interfacial energy

The interfacial energy component corresponds to the en-
ergy of an incoherent interface relative to a coherent inter-
face. The interface between two layers of a multiwalled
nanotube cannot be coherent without the inclusion of tensile
strain, due to the difference in the circumference of consecu-
tive layers. When the interface is coherent, the same number
of unit cells has to be spread out over a length that increases
with distance from the center of the nanotube. This is un-
likely for multiwalled tubes due to the large amount of strain
required. Figure 1 is a simple representation of two layers of
TiS2 where the blue dots represent Ti atoms �S atoms are not
shown for ease of viewing�. Figure 1�a� shows two flat lay-
ers, analogous to the bulk where Ti atoms in one layer
project directly above Ti atoms in a preceding layer. No
strain is required to maintain alignment throughout the lay-
ers. Figure 1�b� shows two of these layers bent indepen-
dently of each other, with the radii of curvature of the two
layers analogous to consecutive layers in a nanotube. In or-
der for the interface to be coherent, the alignment lines
should be perpendicular to the surface. While this is true in
the center of Fig. 1�b�, for most of the nanotube the differ-
ence in length between the two layers results in an incoher-
ent interface. Figure 1�c� shows two layers bent with the
same curvature as in Fig. 1�b�, but the layers are strained so
as to maintain the bulk alignment. In this figure the align-
ment lines are perpendicular to the surface. However, a large
amount of tensile strain is required to achieve this alignment.
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The tensile strain energy required to maintain this alignment
for multiple layers grows rapidly with the number of layers
�Etensile�n3�.

The interfacial energy term in Eq. �1� is defined as the
binding energy of a coherent interface minus the binding
energy of an incoherent interface. This can be represented by
an interfacial energy constant, �int, which gives the interfa-
cial energy per unit of interfacial area.

Einterface = Eincoherent − Ecoherent = NincA0�int. �7�

In this equation, Ninc is the number of atoms with an inco-
herent interface and A0 is the interfacial area per atom.

III. NANOTUBE MODELS: POLYGONAL VERSUS
CIRCULAR-CROSS SECTION

We will compare the energy of a normal cylindrical tube
with that of a polygonal tube. The polygonal model dis-
cussed in this paper consists of nanotubes where the cross
section is a polygon with rounded corners. The bending
strain energy is localized to the corners of the polygon, re-
sulting in increased strain energy, but the flat sides of the
polygon provide a coherent interface leading to a reduction
in interfacial energy. Because the interfacial energy is much
larger than the bending strain energy the polygonal model
can often result in lower overall energy than that for a nano-
tube with a circular-cross section. In this section we will first
discuss the polygonal model in relation to single-walled
nanotubes, and then we will expand this to multiwalled tubes
and explain what determines the number of sides to the poly-
gon.

A. Single polygonal tube

In an ideal polygon the corners are perfectly sharp, i.e.,
the radius of curvature of the corners is 0. This is not prac-

tical for a nanotube. The corners will have some finite radius
of curvature, which will define the strain energy of the nano-
tube. To illustrate this point Fig. 2�a� depicts a six-sided
polygon with the radius of curvature labeled. All of the strain
energy is localized in these curved corners; the flat sections
are free of strain. The total strain energy of a single polygo-
nal tube depends only on this radius of curvature. To prove
this point, consider an N-sided polygon. This polygon will
have N corners, each with the same radius of curvature, rc,
and subtending an angle of 2�

N . The length of the strained arc
at each corner is thus 2�

N rc. Therefore, the total strain energy
per unit cell for this tube will be:

Ebend = NClength
2�

N
rc

Cbend

rc
2 =

2�CbendClength

rc
�8�

The total strain energy is independent in the number of sides
and only depends on the radius of curvature at the corners.
Equation �8� is equivalent to Eq. �4� for bending strain en-
ergy with the radius of the tube replaced by the radius of
curvature at the corners. For a single-walled nanotube there
is no interfacial energy so the optimum structure is the one
that minimizes the bending strain energy, which occurs for
the maximum radius of curvature. For a given number of
atoms on the circumference, the maximum radius of curva-
ture results in a circle, Fig. 2�b�.

B. Multiwalled tube

For a multiwalled nanotube the polygonal model provides
lower interfacial energy than a circular nanotube as the flat
sections of the tube can be coherent and without strain, al-
though this occurs with an increase in strain energy due to
the smaller radius of curvature in the corners. All of the
incoherence and strain is localized in the corners of the poly-
gon. Figure 3 shows two consecutive nanotube layers where
the thick red lines represent a coherent interface. The outer
layer has more length and thus more atoms than the inner
layer. When the cross section is circular, as in Fig. 3�a�, these
excess atoms are spread evenly around the circumference of
the tube, resulting in a mostly incoherent interface. When the
cross section is a polygon �Fig. 3�b�� it is possible for the flat
sections to have a coherent interface as all of the excess

FIG. 1. �Color online� Alignment diagram. Bulk alignment �a�
cannot be maintained when layers are curved without strain �b�. If
tensile and compressive strain is applied �c� bulk alignment can be
maintained

FIG. 2. �Color online� Bending strain in a single-walled polygo-
nal nanotube �a� is localized to the corners where the radius of
curvature is less than that of a cylindrical nanotube �b� with equal
circumference
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atoms are located in the corners of the polygon.
A nanotube with n layers will have n−1 interfaces and its

energy per unit cell can be obtained by adding the strain and
interfacial energy

E = n �
2�CbendClength

rc
+ �n − 1�2�rclunit�int, �9�

where �int is the interfacial energy per unit area and lunit is
the length of the unit cell. To simplify the equation, we as-
sumed that the radius of curvature remains constant from
layer to layer, which may not be the case. This will be dis-
cussed further in Sec. VI. To determine the optimum radius
of curvature we minimize Eq. �9� with respect to the radius
of curvature.

�E

�rc
= �n − 1�2�lunit�int − n

2�CbendClength

rc
2 = 0, �10�

rc =� n

n − 1

CbendClength

lunit�int
. �11�

One requirement of this model is that a coherent interface
is attained on either side of each rounded corner. For this to
occur, the difference in the length for two consecutive layers
to go around one corner must be equal to an integer number
of lattice vectors in the rolling direction. Figure 4 is a dia-
gram of two consecutive layers to illustrate how the two
layers must be coherent at the end of the curved segment.

The outer layer has additional length equal to 2�l, deter-
mined by the interlayer spacing, d, and the angle of the cor-
ner, �

�l = dtan��

2
� = d tan��

N
� . �12�

In order for the layers to have a coherent interface at the
points indicated, this excess length must equal an integer
number of lattice vectors in the rolling direction. The lattice
vector in the rolling direction is determined by the chirality
of the nanotube. To illustrate this, Fig. 5 shows the top view
of a TiS2 sheet. The rolling direction indicated in the figure is
that for a zigzag �n ,0� nanotube. The vector, a, is the lattice
vector in the rolling direction.

This chirality dependence is the main restriction of the
polygon model. There are only a few chiralities for which
coherence of the flat segments can be achieved. For example,
in TiS2 the interlayer spacing, d, is equal to 5.7 Å. The total
difference in length between consecutive layers is 2�d
=35.8 Å. This length difference is divided evenly among the
corners in the polygon model. As a result, there are only four
chiralities �along with symmetric equivalents� that have a
lattice vector small enough for the polygon model to apply.
However, the symmetric equivalents constitute 38% of all
possible nanotube chiralities. Table I lists the four chiralities.
The first column, chirality, is the x ,y vector defining the
rolling direction, followed by a, the length of the lattice vec-
tor in the rolling direction, as shown in Fig. 5. The third
column, �opt, is the optimum bending angle for that lattice
vector. The bending angle is illustrated in Fig. 4. N is the
number of sides on a polygon with a bending angle that
comes closest to �opt. Next is the actual bending angle, �,
corresponding to a polygon with N sides. The last column is
the strain, �, resulting from the difference between the lattice
vector, a, and the excess length for the actual bending angle.
The strain is this difference divided by the length of the
curved segment, calculated for a radius of curvature of
14.7 Å. For all chiralities that are not a symmetric equiva-
lent of one of the chiralities shown in Table I the polygon
model will not apply, unless defects are included to provide
the appropriate difference in length between layers. It is pos-
sible that the difference in length between successive layers
going around the corner is not a full lattice vector, but in-
stead results in a stacking fault in the flat section of the tube.

IV. CALCULATION DETAILS

A. Methodology

Calculations were carried out using density-functional
theory �DFT� as implemented in the Vienna ab initio simu-

FIG. 3. �Color online� Multiwalled �a� cylindrical nanotubes
have less coherent interface than �b� polygonal nanotubes. Thick
red lines represent coherent interface while black lines represent
incoherent interface.

coh.

�l

lc

lc

d

Β

FIG. 4. �Color online� Two layers of a polygonal nanotube, rep-
resenting the length difference between layers, �l, the curved length
lc, and the bending angle, �

FIG. 5. �Color online� Top view of TiS2 sheet showing the lat-
tice vector in the rolling direction
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lation package �VASP�.60 We have used the generalized gra-
dient approximation �GGA� of Perdew-Burke-Ernzerhof
�PBE� to treat the exchange and correlation interaction. Pro-
jector augmented wave �PAW� potentials were used61,62 with
valence states 3d34s1 for Ti and 3s22p4 for S.

Structural parameters for a TiS2 sheet, consisting of a
sulfur-titanium-sulfur triple layer, were optimized using a
three atom unit cell with a 15 Å vacuum layer. Atomic po-
sitions as well as unit cell shape and volume for this structure
were relaxed using a 15�15�4 Monkhorst-pack k-point
mesh until the forces on all atoms were less than 0.03 eV /Å.
The cell parameters determined for a TiS2 sheet were used to
create all curved surfaces examined in this study.

Bending strain was calculated using the curved surface
method discussed in Refs. 63 and 64. These surfaces contain
flat and curved sections as would occur in a polygonal nano-
tube. Interfacial energy calculations were made on structures
containing two curved surfaces separated by the experimen-
tally measured interlayer distance of 5.7 Å. The length of
the curved segment was varied in order to vary the amount of
incoherent interface.

When relaxing a curved surface, its size and shape were
fixed by freezing the atomic positions of all Ti atoms; only
the atomic positions of the S atoms were allowed to change.
Inspection of the forces on the Ti atoms showed that freezing
the Ti atoms did not have a significant effect on the results.
Calculations were converged until all forces were less than
0.03 eV /Å with a gamma point centered k grid of 1�1
�6.

B. TiS2 structure

We chose TiS2 nanotubes for our study because they are a
common type of inorganic nanotube and have potential as an
energy storage material.28–32,63 Bulk TiS2 has long been stud-
ied as an intercalation compound and TiS2 nanotubes have
shown the ability to store hydrogen and lithium. Bulk TiS2
forms the CdI2-1T structure which consists of layers of Ti
atoms octahedrally coordinated by S atoms.63,65,66 These
triple layers �S-Ti-S� are separated by a Van der Waals gap
and stacked such that the titanium atoms project on top of
each other. This triple layer is the basic structural unit of
TiS2 layered nanotubes.

V. RESULTS

A. Bending strain energy

The curved surface method was used to determine the
bending strain energy constant for a triple layer of TiS2. Cal-

culations were performed on structures with various bending
angles and curved lengths. Figure 4 shows the bending angle,
�, and the curved length, lc. These two parameters define
the radius of curvature, rc= �

lc
. The bending strain energy per

formula unit is given by
Cbend

rc
2 . The only unknown parameter

in the equation for the bending strain energy �Eq. �8�� is the
constant, Cbend.

In order to determine the bending strain energy constant
we calculated the strain energy for structures with bending
angles of 10, 20, 30, 40, and 60°. For each of these angles we
performed calculations on structures with curved lengths of
10 and 20 Å. Figure 6 shows the results of these calcula-
tions. The points are the actual calculated strain energy,
while Eq. �8� is plotted with a bending strain energy constant
of 4.033 eV Å2 per atom for the two different curved
lengths. The data points agree with the fit line with an RMS
deviation of 4.1 meV.

B. Interfacial energy

In layered structures such as TiS2, the layers are held
together by Van der Waals forces, which are not captured
with DFT. However, when the stacking is disordered the dis-
tance between S atoms in consecutive layers is considerably
less than the distance between S atoms in the same layer. The
effect of this decrease in bond length, which is captured well
with DFT, is a large contributor to the interfacial energy in
this material due to the ionicity of the S-S interaction.67 The
interfacial energy will change with a change in interlayer
spacing, but this was not investigated in this work, because it
would be more strongly affected by Van der Waals forces and
thus not accurately captured with DFT.

TABLE I. Allowed chiralities in the polygonal model as applied to TiS2 nanotubes. For each chirality the
table shows the length of the vector, maximum number of sides, angle of each corner and strain required at
the corners of the polygon.

Chirality a �Å� �opt N � �

1,0 3.460 34.780° 10 36° −0.95%

2,1 5.993 60.240° 6 60° 0.11%

3,1 9.154 92.018° 4 90° 0.63%

4,1 12.475 125.399° 3 120° 1.26%

� �
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FIG. 6. �Color online� Strain energy versus bend angle for TiS2

sheets with curved lengths of 10 and 20 Å
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To determine the interfacial energy for incoherent inter-
faces we created double layer curved surfaces consisting of
two TiS2 triple layers separated by 5.7 Å, the experimentally
measured interlayer spacing in both bulk TiS2 and TiS2
nanotubes.59 The length of the curved portion of these sur-
faces was varied in order to vary the amount of incoherent
interface. Calculations were also performed on two flat TiS2
triple layers separated by 5.7 Å to determine the energy of a
completely coherent interface. The difference between the
energy of two single layers and that of a double layer is the
interfacial energy. The interfacial energy for the structure
with a completely coherent interface is subtracted from the
interfacial energy for the structures with some incoherent
interface to give the excess energy due to an incoherent in-
terface.

Figure 7 shows the excess energy plotted versus the
amount of incoherent interface. The line fitted to the data
corresponds to an interfacial energy constant of 18.67 meV
per atom. This is the energy of an incoherent interface rela-
tive to a coherent interface. Structures with a different inco-
herence length also have a different radius of curvature and
thus the structure of the interface is slightly different. The
good agreement of the data points with the line indicate that
the interfacial energy at the corners of the polygon can be
well approximated by a single interfacial energy constant.

C. Tensile strain energy

The energy required to compress or expand a nanotube
layer was not included in the previous equations, but it is a
relevant factor in the overall energy of the polygonal model.
Due to Hookes law this energy varies with the square of the
strain fraction, �. To determine the tensile strain energy con-
stant, we made calculations on bulk TiS2 with varying levels
of compression and expansion of one of the in-plane lattice
constants. The expected form of the results of these calcula-
tions was shown in Eq. �6�. The results of these calculations
are shown in Fig. 8. The data is fitted to Eq. �6� with a
Young’s modulus of 36.2 GPa, corresponding to a tensile
strain energy constant, Ctensile, of 8.9 eV per atom.

VI. DISCUSSION

In the previous section we showed results that can be used
to estimate the interfacial energy constant and the bending

strain energy constant of TiS2 and determine the nanotube
shape with the lowest energy. Based on these results the low-
energy radius of curvature for a polygonal nanotube can be
calculated. Equation �11�, repeated here, gives the optimum
radius of curvature for a given number of layers, n.

rc =� n

n − 1

CbendClength

lunit�int
. �13�

Table II lists the two energy constants and the optimum ra-
dius of curvature for several values of the number of layers,
n.

Based upon our model, when the radius of curvature at
the corners of a polygonal nanotube is equal to the nanotube
radius the cross section will be circular, because the entire
circumference of the nanotube is taken up by the curved
corners. For example, Table II shows that the optimum rc is
20.79 Å when there are 2 layers in a TiS2 nanotube, so when
this nanotube exhibits a 2.079 nm radius both morphologies
are identical in our model. More importantly, when the ra-
dius of the bilayer TiS2 tube is less than 2.079 nm the
circular-cross section is more favorable while radii greater
than 2.079 nm should yield a polygonal-cross section. To
generalize, multiwalled nanotubes exhibiting a radius smaller
than the optimum radius of curvature �for a particular n
value� should display circular-cross sections while nanotubes
of radii greater than the optimum rc should form a
polygonal-cross section to yield a lower overall energy by
creating straight segments. Equation �13� is derived from the
approximate energy model for polygonal nanotubes shown in
Eq. �9�. In this section we will discuss some of the approxi-
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TABLE II. Optimum radius of curvature, rc, of the innermost
nanotube layer decreases with the number of layers, n

Bending strain energy constant, Cbend 4.033 eV�Å2

Interfacial energy constant, �int 18.67 meV

n=24 rc=20.79 Å

n=4 rc=16.97 Å

n=6 rc=16.10 Å

n=8 rc=15.71 Å

n=10 rc=15.49 Å

n=	 rc=14.70 Å
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mations in this model and how they affect the critical radius.
The first issue to consider is the radius of curvature at the

corners of the polygon and how this radius of curvature
might change for multiple nanotube layers. The previous dis-
cussion and equations in this paper have assumed that the
radius of curvature is the same for every layer of the nano-
tube. This implies that the interlayer spacing cannot be the
same throughout the corner.

There are two extreme cases as to how the radius of cur-
vature may change between successive layers. Either the ra-
dius of curvature is constant for every layer or the radius of
curvature increases by the interlayer spacing every layer.
Figure 9 illustrates these extremes. Figure 9�a� shows two
layers where the radius of curvature is the same for each
layer. In this case the interlayer spacing is larger at the cor-
ners than for the rest of the nanotube. The ratio of d2 to d is

1

cos��
2

�
. For �=60° this corresponds to a difference in inter-

layer spacing of 15%. Figure 9�b� shows two layers where
the radius of curvature changes by the interlayer spacing
from one layer to the next. In this case the spacing is the
same at the corners as it is in the rest of the nanotube. How-
ever, when the radius of curvature increases, the curved
length also increases. As a result the amount of incoherent
interface increases with the radius of curvature. As we have
no information on how the interfacial energy changes with
an increase in the interlayer spacing we cannot predict which
of the extremes is more likely.

Equations �9�, �11�, and �13� are derived under the as-
sumption that the radius of curvature is constant. One can
revise Eq. �9� to account for a different radius of curvature in
each layer:

Epolygon = 2�Clength�
i=0

n−1
Cbend

rc + id

+ 2��int	�rc +
d

2
��n − 1� + d�n − 2�
 . �14�

The variable rc is the radius of curvature of the innermost

layer. For several values of n Table III shows the radius of
curvature of the innermost nanotube layer that results in the
minimum energy.

As can be seen from Table III, Eq. �9� does not change the
main conclusion of this paper, above a critical radius, po-
lygonal nanotubes have lower energy than circular nano-
tubes. In fact, the critical radius is lower in this case than for
the original model. If the optimum radius of curvature is
smaller than the radius of the innermost nanotube layer and
the chirality of the nanotube is symmetrically equivalent to
one of those shown in Table I, then the polygonal model will
be the low-energy solution. Most inorganic nanotubes have
approximately ten layers and an inner radius of
50 Å.52,57,59,68 This is well above the optimum radius of cur-
vature shown in either Table II or III, and hence it should be
favorable for them to form polygons.

As mentioned in Sec. II, calculations discussed in this
paper are for armchair nanotubes. Armchair nanotubes were
chosen for extensive study because this chirality provides the
smallest unit cell. Calculations were also performed on zig-
zag �n ,0� nanotubes for comparison. The bending strain en-
ergy constant and interfacial energy constant change with
chirality, but the difference is not large enough to change the
main conclusion of this paper. The dominant effect of chiral-
ity is that it determines the length of the lattice parameter in
the rolling direction as discussed in Sec. III

Because the length of the periodic unit cell, which ac-
counts for the difference in length between two consecutive
corners, will rarely be equal to 2�l from Eq. �12� there will
be some tensile or compressive strain. Table I shows all of
the chiralities for which the polygonal model applies and the
fractional strain for each chirality. The strain fractions shown
in Table I are calculated by dividing the difference between
the unit cell length, a, and 2�l by the length of the arc at the
corner:

� =
a − �d

�rc
. �15�

The value of rc used is the value shown in Table II for an
infinite number of layers, 14.7 Å. The value of � will de-
crease for larger radii of curvature and increase for smaller
radii of curvature. The value of � will also increase with
multiple layers. The values shown in Table I apply to the
second layer. For the third layer the strain will be twice as
large, three times as large for the fourth layer, etc. This is
essentially because the third layer will have two more peri-

d

d2

a

d
d

b

FIG. 9. �Color online� Two cases of how the radius of curvature
changes for multiple nanotube layers. In �a� the radius of curvature
remains constant, in �b� the radius of curvature increases by the
interlayer spacing, d.

TABLE III. Optimum radius of curvature for several values of
the number of layers, n, for the case where the radius of curvature
changes from one layer to the next.

Number of layers Optimum rc

2 18.4 Å

4 11.5 Å

6 8.8 Å

8 7.2 Å

10 6.2 Å
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odic units than the first layer, so the numerator of Eq. �15�
will be twice as large, while the denominator will not change
considerably. This strain must be considered. To quantify the
magnitude of this strain we calculated the total tensile strain
for a ten-layer nanotube with a chirality of �2,1�, where the
radius of curvature of consecutive layers increases by the
interlayer spacing, as shown in Fig. 9�b�. Equation �18� sum-
marizes these calculations.

rci = rc0 + d�i − 1��i = 1,2,3 . . . 10� , �16�

�i =
�a − �d� � �i − 1�

�rci
, �17�

�Ei = 2�rciClengthCstrain�i
2. �18�

The calculated tensile strain for the entire ten-layer nanotube
is 183 meV, corresponding to 0.1 meV per strained atom.
This is a negligible amount of strain energy, but this calcu-
lation is for the chirality with the smallest strain fraction. For
a similar ten-layer nanotube with a chirality of �4,1�, which
has the largest strain fraction of all chiralities shown in Table
I, the calculated tensile strain energy is 23.25 eV or 11.3
meV per strained atom. This is a considerable amount of
strain energy and could prevent polygonal nanotube forma-
tion.

At this point there is limited experimental evidence of
polygonal inorganic nanotubes. There are a few possible rea-
sons for this. There are only a few examples of cross sec-
tional images of nanotubes, so if polygonal nanotubes exist,
it is unlikely they would be seen. There are many examples
of faceted nanoparticles.6,7,69 It is difficult to distinguish a
very short nanotube from a nanoparticle. When a nanotube is
faceted as in the polygonal model, it is possible that instead
of nanotube growth, the ends of the nanotube close to form a
very short, closed ended nanotube, which has the appearance
of a nanoparticle. Reference 69 shows a CdI2 nanoparticle
with an hexagonal-cross section. The particle appears to be a
polygonal nanotube that only grew to a length of 10 nm
before closing at the ends.

Thus far polygonal nanotubes have been depicted in this
paper as having a cross section that is a regular polygon, but
this is not a requirement. Because all strain and interfacial
energy is located in the corners, the length and location of
the flat segments have no effect on the energy. Figure 10
illustrates this point. This figure shows two possible nano-
tube cross sections. In each case the curved length and radius
of curvature of each corner are identical. The total length of
the flat sections in each case is also identical. As a result each
nanotube would have the same energy. This point is rein-
forced by Ref. 69. This paper shows two CdI2 nanoparticles.
The cross section of each nanoparticle is a hexagon, but the
two hexagons are vastly different and neither one is a regular
polygon. Due to this equivalence of structures, polygonal
nanotubes can be distorted with no change in energy. There
would be some force required to shift the position of the
corners, but the initial and final structures will have the same

energy. This only applies to open-ended nanotubes. The ends
of closed-ended nanotubes would likely provide resistance to
deformation.

It is useful to consider how the radius of curvature re-
quired for polygonal nanotube formation varies with certain
properties of the material. As is shown in Eq. �13�, the opti-
mum radius of curvature varies with the square root of the
bending strain energy constant, so nanotubes of stiffer mate-
rials will require larger radii for polygonal nanotube forma-
tion. Stiffer materials will also have more tensile strain en-
ergy resulting from the mismatch between the lattice
parameter and the excess length between layers, further re-
ducing the likelihood of polygonal nanotube formation. The
optimum radius of curvature varies inversely with the square
root of the interfacial energy constant, so the likelihood of
polygonal nanotube formation is increased for materials with
a larger interfacial energy constant.

VII. CONCLUSIONS

We have shown here that a multiwalled nanotube with a
polygonal-cross section can have a lower energy than a
nanotube with a circular-cross section. The polygonal-cross
section results in higher strain energy because the bending
radius is smaller, but this can be more than compensated for
by reduced interfacial energy. This energy reduction occurs
because the flat sections of the nanotube can have a coherent
interface with no tensile strain. A coherent interface has
much lower energy than an incoherent interface. When the
cross section is circular it is not possible to maintain a co-
herent interface without an excessive amount of tensile
strain.

In order to maintain a coherent interface in the flat sec-
tions of a polygonal nanotube the difference in length be-
tween two layers must be equal to an integer number of

FIG. 10. �Color online� Cross section of two possible polygonal
nanotubes that have the same energy in the polygonal model pre-
sented here
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lattice parameters in the rolling direction. This lattice param-
eter is determined by the chirality of the nanotube and only a
few nanotube chiralities can therefore easily form polygons.
The radius of inorganic nanotubes seen experimentally is
considerably above the minimum radius required for the po-
lygonal model to apply, so inorganic nanotubes with the re-
quired chiralities may form polygonal-cross sections, though
they do not need to be regular polygons. The energy is de-
termined strictly by the radius of curvature of the corners of
the polygon. This would result in extremely low resistance to
deformation of polygonal nanotubes.

We hope that the model predictions made in this paper
will inspire further experimental investigations into the shape
of multiwalled nanotubes.

ACKNOWLEDGMENTS

This work was supported by the MRSEC Program of the
National Science Foundation under Grant No. DMR 02-
13282, by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of FreedomCAR, and Vehicle
Technologies of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231, with the Lawrence Berke-
ley National Laboratory. Additional computer resources were
provided by the National Partnership for Advanced Comput-
ing Infrastructure �NPACI� at the San Diego Supercomputer
Center.

*kjt@mit.edu
†redoe@mit.edu
‡gceder@mit.edu

1 S. Iijima, Nature �London� 354, 56 �1991�.
2 R. Tenne, M. Margulis, M. Genut, and G. Hodes, Nature �Lon-

don� 360, 444 �1992�.
3 L. Margulis, G. Salitra, R. Tenne, and M. Tallanker, Nature

�London� 365, 113 �1993�.
4 M. Nath and C. N. R. Rao, Angew. Chem., Int. Ed. 41, 3451

�2002�.
5 C. N. R. Rao and Manashi Nath, Dalton Trans. 2003, 1.
6 R. Tenne, Chem.-Eur. J. 8, 5296 �2002�.
7 M. Remskar, Adv. Mater. 16, 1497 �2004�.
8 R. Tenne, J. Mater. Res. 21, 2726 �2006�.
9 R. Tenne, Nat. Nanotechnol. 1, 103 �2006�.

10 G. Tourillon, L. Pontonnier, J. P. Levy, and V. Langlais, Electro-
chem. Solid-State Lett. 3, 20 �2000�.

11 N. Li, X. Li, X. Yin, W. Wang, and S. Qiu, Solid State Commun.
132, 841 �2004�.

12 S. Iijima and T. Ichihashi, Nature �London� 363, 603 �1993�.
13 M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar,

P. Stadelmann, F. Levy, and D. Mihailovic, Science 292, 479
�2001�.

14 Y. D. Li, X. L. Li, R. R. He, J. Zhu, and Z. X. Deng, J. Am.
Chem. Soc. 124, 1411 �2002�.

15 V. V. Ivanovskaya and G. Seifert, Solid State Commun. 130, 175
�2004�.

16 Q. Chen, W. Zhou, G. Du, and L. M. Peng, Adv. Mater. 14, 1208
�2002�.

17 W. Wang, O. K. Varghese, M. Paulose, and C. A. Grimes, J.
Mater. Res. 19, 417 �2004�.

18 R. Ma, Y. Bando, and T. J. Sasaki, J. Phys. Chem. B 108, 2115
�2004�.

19 M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, and
H. U. Nissen, Angew. Chem., Int. Ed. 37, 1263 �1998�.

20 Y. Maniwa et al., Phys. Rev. B 64, 073105 �2001�.
21 N. G. Chopra, R. J. Luyken, K. C. V. H. Crespi, M. L. Cohen, S.

G. Louie, and A. Zettl, Science 269, 966 �1995�.
22 L. Rapoport, N. Fleischer, and R. Tenne, J. Mater. Chem. 15,

1782 �2005�.
23 A. Rothschild, S. R. Cohen, and R. Tenne, Appl. Phys. Lett. 75,

4025 �1999�.
24 Y. Zhu, T. Sekine, K. Brigatti, S. Firth, R. Tenne, R. Rosentsveig,

H. Kroto, and D. Walton, J. Am. Chem. Soc. 125, 1329 �2003�.
25 G. Mor, M. Carvalho, O. Varghese, M. Pishko, and C. Grimes, J.

Mater. Res. 19, 628 �2004�.
26 M. Adachi, Y. Marata, I. Okada, and S. Yoshikawa, J. Electro-

chem. Soc. 150, G488 �2003�.
27 Y. Lei, L. Zhang, G. Meng, G. Li, Z. Zhang, C. Liang, W. Chen,

and S. Wang, Appl. Phys. Lett. 78, 1125 �2001�.
28 F. Cheng and J. Chen, J. Mater. Res. 21, 2744 �2006�.
29 J. Chen and F. Wu, Appl. Phys. A: Mater. Sci. Process. 78, 989

�2004�.
30 J. Chen, Z. Tao, and S. Li, Angew. Chem., Int. Ed. 42, 2147

�2003�.
31 Z. L. Tao, L. N. Xu, X. L. Gou, J. Chen, and H. T. Yuan, Chem.

Commun. �Cambridge� 2004, 2080.
32 J. Chen, S. Li, Z. Tao, Y. Shen, and C. Cui, J. Am. Chem. Soc.

125, 5284 �2003�.
33 R. Dominko, D. Arcon, A. Mrzel, Z. Zorko, P. Cevc, P. Ven-

turini, and M. Gabe4rscek, M. Remskar, and D. Mihailovic,
Adv. Mater. 14, 1531 �2002�.

34 J. Chen, N. Kuriyama, H. Yuan, H. Takeshita, and T. Sakai, J.
Am. Chem. Soc. 123, 11813 �2001�.

35 D. V. Bavykin, A. A. Lapkin, P. K. Plucinsky, J. M. Friedrich,
and F. C. Walsh, J. Phys. Chem. B 109, 19422 �2005�.

36 Y. Zhou, L. Cao, F. Zhang, B. He, and H. Li, J. Electrochem.
Soc. 150, A1246 �2003�.

37 L. Jiao, H. Yuan, Y. Wang, J. Cao, and Y. Wang, Electrochem.
Commun. 7, 431 �2005�.

38 F. Y. Wu and H. M. Cheng, J. Phys. D 38, 4302 �2005�.
39 M. Liu and J. M. Cowley, Carbon 32, 393 �1994�.
40 M. Ishioka, T. Okada, K. Matsubara, M. Inagaki, and Y. Hish-

iyama, J. Mater. Res. 8, 1866 �1993�.
41 C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S.

Dresselhaus, Phys. Rev. Lett. 81, 1869 �1998�.
42 D. Golberg, M. Mitome, Y. Bando, C. C. Tang, and C. Y. Zhi,

Appl. Phys. A: Mater. Sci. Process. 88, 347 �2007�.
43 A. Celik-Aktas, J. M. Zuo, J. F. Stubbins, C. Tang, and Y. Bando,

Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 533 �2005�.
44 S. Dimovski and Y. Gogotsi, Nanomaterials Handbook �Taylor

and Francis, London, 2007�.

POLYGONAL MODEL FOR LAYERED INORGANIC… PHYSICAL REVIEW B 80, 014102 �2009�

014102-9



45 J. S. Speck, M. Endo, and M. S. Dresselhaus, J. Cryst. Growth
94, 834 �1989�.

46 Y. Gogotsi, J. A. Libera, N. Kalashnikov, and M. Yoshimura,
Science 290, 317 �2000�.

47 H. Okuno, A. Palnichenko, J. F. Despres, J. P. Issi, and J. C.
Charlier, Carbon 43, 692 �2005�.

48 N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G.
Louie, and A. Zettl, Nature �London� 377, 135 �1995�.

49 S. Iijima, C. Brabec, A. Maiti, and J. Bernhole, J. Chem. Phys.
104, 2089 �1996�.

50 V. Lordi and N. Yao, J. Chem. Phys. 109, 2509 �1998�.
51 U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A.

Rinzler, R. E. Smalley, and P. C. Eklund, Phys. Rev. B 59,
10928 �1999�.

52 U. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones, H.
Terrones, G. W. Kroto, and D. R. M. Walton, Chem. Mater. 12,
1190 �2000�.

53 Y. Q. Zhu et al., J. Mater. Chem. 10, 2570 �2000�.
54 J. C. Charlier, P. Lambin, and T. W. Ebbesen, Phys. Rev. B 54,

R8377 �1996�.
55 J. Tang, L. C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S.

Iijima, Phys. Rev. Lett. 85, 1887 �2000�.
56 S. F. Braga and D. S. Galvao, J. Comput. Chem. 28, 1724

�2007�.
57 Y. Feldman, E. Wasserman, D. Srolovitz, and R. Tenne, Science

267, 222 �1995�.
58 M. Nath and C. N. R. Rao, J. Am. Chem. Soc. 123, 4841 �2001�.
59 J. Chen, S. L. Li, Z. L. Tao, and F. Gao, Chem. Commun. �Cam-

bridge� 2003, 980.
60 J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533

�1996�.
61 P. E. Blochl, Phys. Rev. B 50, 17953 �1994�.
62 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
63 K. Tibbetts, C. R. Miranda, Y. S. Meng, and G. Ceder, Chem.

Mater. 19, 5302 �2007�.
64 Y.-S. Lee and N. Marzari, Phys. Rev. Lett. 97, 116801 �2006�.
65 A. D. Yoffe, Solid State Ionics 39, 1 �1990�.
66 V. V. Ivanovskaya, G. Seifert, and A. L. Ivanovskii, Semicon-

ductors 39, 1058 �2005�.
67 Y. S. Kim, M. Mizuno, I. Tanaka, and H. Adachi, Jpn. J. Appl.

Phys., Part 1 37, 4878 �1998�.
68 A. Rothschild, G. L. Frey, M. Homyonfer, M. Rappaport, and R.

Tenne, Mater. Res. Innovations 3, 145 �1999�.
69 R. Popovitz-Biro, N. Sallacan, and R. Tenne, J. Mater. Chem.

13, 1631 �2003�.

TIBBETTS, DOE, AND CEDER PHYSICAL REVIEW B 80, 014102 �2009�

014102-10


